EGM 591. Graduate Project Completion

One Credit

Recorded with grade by converting one credit-hour of EGM 590. Occurs after successful defense of the Graduate Thesis before a Thesis Committee in an open forum, and after approved copies have been submitted to the department office and Farley Library for binding and record.

Master of Science in Mechanical Engineering (M.S.M.E.)

Jamal A. Ghorieshi, Ph.D., Program Director

Courses are available days and evenings.

Admission Requirements

Applications are invited from individuals who possess a B.S. degree in Mechanical Engineering or close fields from an accredited institution. Applicants not meeting the requirements may be provisionally admitted and will be required to take sufficient undergraduate courses to make up deficiencies.

To be considered for admission, the applicant must submit the following minimum requirements:

Submit to the Graduate Admissions Office a completed graduate application for admission with payment of appropriate application fee

Submit two letters of recommendation from previous academic faculty and/or from current or previous supervisors, if employed.

Demonstrate satisfactory performance as an undergraduate by providing a complete set of official undergraduate transcripts.

International students: Refer to page 10 for additional admissions requirements.

Degree Requirements

The Master of Science in Mechanical Engineering program requires thirty (30) credits of graduate level course work. The program consists of 15 credits of mandatory core courses. Students have the option of a six-credit thesis or a three-credit project with an additional three-credit technical elective. Students may select 9/12 additional credits hours from the list of technical electives.

Core Courses:

Applied Engineering Analysis ME 401; Product Development ME 411; Transport Phenomena ME 421; Solid Mechanics ME 436; Materials Science ME 442.

Thesis/Project Option:

Graduate students are strongly recommended to select the thesis option to complete their graduate course work. However, they may choose a three-credit hour project option.

First Semester Second Semester

ME 401 – Applied Engineering Analysis ME 436 – Solid Mechanics

ME 411 – Product Development ME 442 – Materials Science

ME 427 – Transport Phenomena Technical Elective

Third Semester Fourth Semester

ME 501 – Graduate Education Continuum ME 599 – Thesis / OR

Technical Elective Project + Technical Elective

Technical Elective Technical Elective

Technical Electives:

Technical electives may be selected from the technical elective graduate course list. In addition, up to one graduate level course from any Engineering or Science field is transferable.

Non-thesis option: 3 credits of ME 599 are required. Students should submit a well-documented report to the department.

Thesis option: Six credits of thesis ME 599 are required. The thesis shall be defended in an open forum. Three faculty members constitute a Thesis Committee with the Thesis Advisor as Chair.

Students who opt to complete a thesis may select from posted research topics or proposed areas of interest of the faculty and submit a proposal of their thesis to the Department. Final decision of topic and advisor will be taken by the Department in accordance with Department guidelines. Ordinarily, these topics will touch on one or more of the following areas: structural Analysis, Thermal Sciences, Finite Element Method, Solid Mechanics, Dynamics, MEMS, control Systems; Robotics, Mechatronics, energy conversion.

Both full- and part-time students are limited to a maximum of three thesis credits in any single semester.

The minimum acceptable grade point average is 3.0. (See Grade Regulations.)

Advanced standing or transfer credit is limited to six (3) graduate credits. Petitions should be submitted to the Engineering and Physics Division and should document minimum competency defined as relevant graduate course work at an accredited institution with an earned minimum grade of 3.0 (0-to-4 scale) or equivalent expertise.

Financial Aid

A limited number of assistantships are available for full-time students. Applicants should possess superior academic qualifications and provide good scores in the GRE (General and Engineering).

Mechanical Engineering Course Descriptions

ME 401. Applied Engineering Analysis

Three Credits

This course is intended for physical science and engineering students. Topics include inner product spaces, operator algebra, eigenvalue problems, Fourier series, Sturm-Liouville theory, and partial differential equations. Cross list MTH 461

ME 402. Engineering Computational Analysis

Three credits

This course introduces applications of Matrix algebra (Review only), solution of linear simultaneous equations , solving linear system of equations by iteration methods , roots of algebraic and transcendental equations , interpolation, methods of finding polynomial roots , Eigen values & eigenvectors, numerical integration, numerical differentiation, numerical solution of initial value problems, boundary value problems.

ME 411. Product Development

Three Credits

This course introduces organizational issues and decision-making for capital investments in new technologies. The commercialization process is traced from research and development and marketing activities through the implementation phase involving the manufacturing function. Term project is a commercialization plan for a new manufacturing technology.

ME 418. Quality Control Engineering

Three Credits

This course addresses quality control in the manufacturing environment, statistical methods used in quality assurance, statistical process control.

ME 425. Energy Systems

Three Credits

This course introduces fundamental principals of energy transmission and energy conversion. Comprehension of the physical systems in which the conversion of energy is accomplished. Primary factors necessary in the design and performance analysis of energy systems three credits.

ME 427. Transport Phenomena

Three Credits

This course introduces theory and applications of heat, mass, and momentum transport. The fluid dynamics topics such as conservation laws, laminar and turbulent flow, Navier Stokes equations of motion and other related topics will be covered. Topics include free and forced convection, boiling and condensation, and the analogy between heat and mass transport. Practical problems of engineering applications in different areas will be discussed.

ME 432. Vibration of Dynamic Systems

Three Credits

This course is an introductory course in mechanical vibration dealing with free and forced vibration of single and multi-degree of freedom for linear systems.

Fee: $100.

ME 436. Solid Mechanics

Three Credits

This course is an introduction to continuum mechanics, variational methods, including vectors and tensors, state of stress and compatibility equation, plain stress and strain. Energy Principles and virtual work will be discussed.

ME 438. Machine Design

Three Credits

This course introduces design of machine elements and deals with theories of deformation, failure, and fatigue A study of shaft design, fasteners, welds, gears, balled roller bearings, belts, chains, clutches, and brakes.

ME 439. Classical Mechanics

Three credits

This course is an introduction to classical mechanics. Topics covered include: Newtonian mechanics, oscillations, Lagrangian and Hamilton’s principle, Dynamics of a systems of particles and rigid bodies.

ME 442. Material Science

Three Credits

This course introduces advance materials for engineers, emphasizing the fundamentals of manufacturing/structure/property/function relation and applications. Topics include materials selection for machine design component in micro and nano-scales, biomaterials, nano-composites, and optimized materials for nano-sensors & actuator systems.

ME 451. Mechatronics

Three credits

This course is a multidiscipline technical area defined as the synergistic integration of mechanical engineering with electronic and intelligent computer control in the design and manufacture of industrial products and processes. This course covers topics such as actuators and drive systems, sensors, programmable controllers, microcontroller programming and interfacing, and automation systems integration.

ME 452. Nano-Technology

Three credits

This course explores the fundamentals of Nanotechnology and its applications for colloidal suspension, Electrophoretic deposition and nano sensing by understanding materials properties, micro-machining, sensor and actuator principles. Two hours lecture and three hours lab per week.

ME 454. Control Systems

Three credits

Laplace transforms and matrices. Mathematical modeling of physical systems. Block diagram and signal flow graph representation. Time-domain performance specifications. Stability analysis; Ruth-Hurwitz criterion. Steady state error analysis. Root-locus and frequency response techniques. Design and compensation of feedback systems. Introductory State space analysis.

ME 498. Advanced Topics in Mechanical Engineering

One to Three credits

This course includes selected topics in the field of mechanical engineering. These may include one or more of the following: control systems, automation, robotics, manufacturing systems, solid mechanics, energy systems, fluid flow, acoustics, computer systems, bio-mechanics.

ME 501. Graduate Education Continuum

Three credits

Recorded with grade for one credit-hour. Occurs as a continuum bases till successful completion of thesis or project.

ME 599. Thesis/Project

Three to Six credits

Students have the option of selecting up to six credits- house of thesis or three credit hour of project under guidance of a thesis/project advisor. The thesis will have a committee of three members; at least two members (including the advisor) must be Wilkes faculty members. The thesis/project should be presented in an open forum.